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Part One: Mathematics is the muse of everything 

 

For over two millennia, it has seemed irresistible to imagine that the essence of all 

reality lies in numbers, and that a transcendent system of mathematics, if we could only 

know it synoptically, cosmically, would provide the answers to our questions.  The 

Pythagorean insight that the capacious and sensory world of music is an avatar of ratios 

of numbers, and that, as a result, melody and harmony carry mathematical patterns, must 

have seemed like a revelation.  

The idea that mathematics lies somehow behind everything has motivated inquiry 

since the Ancient Greeks.  If music—from Pythagoras to fractals—can be mathematics, 

and the heavens and their motions can be mathematics, perhaps human biology and even 

the soul are mathematical systems, to be tuned like stringed instruments to their perfect 

order. 

This impulse to seek the essence of reality in mathematics is compelling.  As an 

undergraduate student, I hoped to find within mathematics some technical instruments 

sufficient to describe the human central nervous system and the brain.  The impulse to do 

so was not mystical or merely reductionistic.  The human brain has on the order of 10 to 

100 billion (1011) neurons.  The average number of synaptic connections per neuron is on 

the order of ten thousand (104).  The total number of connections in the brain is therefore 

maybe ten trillion to a quadrillion (1013-1015).  To a mathematician, these numbers are just 

integers, but to a physicist or a neurobiologist, they are huge.  1015 connections is about 

ten thousand times as many stars as astronomers think might be in the entire Milky Way 
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galaxy (1011).  All those connections, inside your head, in a system weighing about 1.4 

kilograms.  The timing and phases of firing in neuronal groups, the suites of ontogenetic 

development in the brain, the electrochemical effect of neurotransmitters on receptors, 

the scope and mechanisms of neurobiological plasticity, the regulation of genetic 

expression in neuroembryology—all invite mathematical treatment.  But where is the 

mathematics sufficient to capture and express such a vast dynamical system, with its very 

large scale integration?  If the brain develops according to darwinian principles, where is 

the mathematics sufficiently powerful to model that descent?  This question returned to 

me when I encountered Gerald Edelman's exploration of the thesis that the brain is a 

somatic selection system.  

The ambition to deploy mathematics to help explain human systems has reached 

in many directions.  It has reached to languages in mathematical linguistics, with its 

algebraic flavor, and also in formal linguistics, which, although it rarely uses principles of 

mathematical systems, nonetheless imitates their notational trappings.  

Can mathematics show us something about narrative?  The question has seemed 

plausible to many scholars.  After all, it is connected to both music and language, which 

carry narrative patterns, through dynamics and clausal forms.  Accordingly, many 

traditions—from Vladimir Propp's Morphology of the Folktale through the French and 

Russian structuralists, formalists, and semioticians—analyze narrative structure as quasi-

algebraic systems, with elements, relations, sequences, and constraints on their 

combination.  What sequences are possible?  How do they recur?  Which are basic? 

Geometric concepts are also routinely applied to narrative, as when we hear of the 

necessary arc of character development.  Madison Smart Bell, in his chapter on "Linear 

Design" in Narrative Design: A Writer's Guide to Structure, explains that "There are 

many possible structures for a narrative, but the most common, familiar, and 

conventional of these is linear design.  Linear stories start at the beginning, traverse some 

sort of middle, and stop at the end.  Furthermore, all linear designs bear some relationship 
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to what is known as the Freitag triangle" (p. 27).  The Freitag triangle is an isosceles 

triangle with a base whose vertices are exposition and resolution, and another vertex in 

the middle that represents a climax.   

More recently, artificial intelligence programmers, principally in the 1970s and 

1980s, borrowed from structuralist, formalist, and semiotic traditions to program 

computers with story grammars, for the purpose of parsing connected natural texts such 

as newspaper stories.  These computer programs have been deployed to generate texts 

that human beings can interpret as stories.   

These are some of the ways in which mathematics has been used to approach 

narrative.  

 

Part Two: Tell me a story 

 

Narrative has equally been used to approach mathematics. 

First, of course, stories often include mathematical content, especially in science 

fiction and fantasy, but in fact mathematics shows up in nearly every kind of narrative, 

even humorous narratives.  In The Hitchhiker's Guide to the Galaxy, Douglas Adams 

treats us to a disquisition on the nature of "bistromath" and its role in the invention of the 

infinite improbability drive. 

Second, stories are a tried and true mechanism for teaching children about 

mathematics.  "Word problems"—almost universally despised by children as torture—

pose mathematical problems by means of small narratives of tinkers, tailors, soldiers, 

spies, cannibals and missionaries, and prisoners caught in dilemmas.  The Phantom 

Tollbooth, by Norton Juster, provides many universally-loved stories that teach 

mathematical concepts. 

Third, narrative provides a great service to the world of mathematics by 

conveying to those who are not engaged in mathematics what it might be like to inhabit 
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that world. This is one of the great virtues of Apostolos Doxiadis's Uncle Petros and 

Goldbach's Conjecture.  Who knows how many young people will become interested in 

mathematics and logic by reading about Manga the dog and Bertrand Russell's childhood 

in Logicomix?  

 

 

Part Three: Story is the muse of mathematics 

 

Here I will explore quite a different relationship between narrative and 

mathematics: Story—the sophisticated human mental ability to conceive of orchestrated 

suites of events, objects, agents, and actions—is much older than any sophisticated 

mathematical accomplishment.  Our advanced abilities for mathematics are based in part 

on our prior cognitive ability for story.  There are basic human cognitive operations that 

make it possible for us to invent mathematical concepts and systems.  One of those 

operations is the fundamental human operation of story—of understanding the world and 

our agency in it through certain kinds of human-scale conceptual organizations involving 

agents and actions in space. Another basic human cognitive operations that makes it 

possible for us to invent mathematical concepts and systems is "conceptual integration," 

also called "blending."  Story and blending work as a team. 

Here, I will explore how the operations of story (or narrative thinking, if you like) 

and blending combine to give us abilities for mathematical thought. 

 

Blending and the Human Mind 

 

What is blending?  (Technical introductions to the nature and mechanisms of 

blending can be found in Fauconnier and Turner, 2002 and 1998; Fauconnier 1997; 

Turner 2001 and 2005.  See also Goguen 1999.)   
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Let us begin with an example.  A man is participating in a wedding.  He is 

consciously enacting a familiar mental story, with roles, participants, a plot, and a goal.  

But while he is fulfilling his role in the wedding story, he is remembering a different 

story, which took place a month before off the Cycladic island of Despotico, where he 

and his girlfriend, who is not present at the wedding, went diving in the hopes of 

retrieving sunken archeological treasures from the newly-discovered Temple of Apollo 

and Artemis.  Why, cognitively, should he be able mentally to activate these two stories 

simultaneously?  There are rich possibilities for confusion, but in all the central ways, he 

remains unconfused.  He does not mistake the bride for his girlfriend, for the treasure, for 

the fish, for the temple, or even for Artemis.  He does not swim down the aisle or speak 

as if through a snorkel.  He does not think that the wedding ring is a recovered 

archeological treasure. 

Now notice something interesting.  Human beings go beyond merely imagining 

stories or concepts that run counter to the present environment.  We can also connect 

them and blend them to make a third mental array.  The man at the wedding can make 

analogical connections between his girlfriend and the bride and between himself and the 

groom, and blend these counterparts into a daydream in which it is he and his girlfriend 

who are being married at this particular ceremony.  This blended story is manifestly false, 

and he should not make the mistake, as he obediently discharges his duties at the real 

wedding, of thinking that he is in the process of marrying his girlfriend.  But he can 

realize that he likes the blended story, and so formulate a plan of action to make it real.  

Or, in the blended story, when the bride is invited to say ‘I do,’ she might say, ‘I would 

never marry you!’  Her fulguration might reveal to him a truth he had sensed intuitively 

but not recognized. 
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Blending, Small Spatial Stories, and Mathematics 

 

Now for mathematics.  Consider the concept of a proof.  A proof is a rigorous 

mathematical argument demonstrating a thesis, but how do we conceive of an argument 

in the first place?   

In The Literary Mind (1996), I discuss how human beings are especially equipped 

to understand the world by making mental blends that are based on small spatial stories.  

We are very good at thinking in terms of small spatial stories.  We are built for it, and we 

are built to use small spatial stories as inputs to conceptual blends.  In small spatial 

stories, we separate events from objects and think of some of those objects as actors who 

perform physical and spatial actions.   We routinely understand our worlds by 

constructing a conceptual integration network in which one of the inputs is a small spatial 

story.   

For example, consider an event that has no actors or actions.  We can blend it with 

a small spatial story that does have an intentional actor and an action, to achieve a human 

scale small spatial story.  In the blend, the event becomes an action by an actor: the wind 

beats the sea; the waves swallow the boat; the boulder refuses to be moved; the car 

decides to stop moving. 

In these small spatial stories, actors are self-propelled movers across a landscape, 

and they manipulate objects.  There is a strong overlap and supplementarity in our 

experience between stories of self-propelled movement and stories of manipulation of 

physical objects.  To manipulate an object, we often must go to it, move our arm and 

hand toward it, grasp the object, and manipulate it.  Someone who is "going for an 

object" is usually moving his entire body in the direction of the object, moving his hands 

toward the object, and intending to grab the object and manipulate it, perhaps by putting 

it in his pocket.  If we say of an act of theft, "One man ran up to another man to snatch 

the jewel away from him so he could run away with it," we have an example of the 
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overlap of a small spatial story of moving with a small spatial story of manipulation.   It 

is no surprise that we call intentional actors "movers and shakers." 

Eve Sweetser (1990) has examined the elaborate system according to which we 

connect action stories of movement with stories of thinking.  She calls this conceptual 

system THE MIND IS A BODY MOVING THROUGH SPACE.  I analyze this system as the 

product of conceptual blending. THE MIND IS A BODY MOVING THROUGH SPACE is a 

special case of  blending  human activity with stories of intentional actors moving and 

manipulating.   

For example, we can say of a chess match, "Experts thought that white would take 

the draw, but white's next move made it clear that white was heading for a win."  Here, 

we have a blend of playing chess (as a mental activity, not as moving pieces on a board) 

with a small spatial story of manipulating and moving (taking and moving).  Through 

blending, actors are "movers and shakers" regardless of whether their actions are spatial.   

When we wish to tell the action-story of a mathematical discovery, we can say 

that the thinker began from a certain assumption, was headed for a certain conclusion, 

stumbled over difficulties, moved faster or slower at various times, had to backtrack to 

correct mistakes, obtained part of the solution but was still missing the most important 

part, had a notion of where to look for it, began at last to see it, followed it as it eluded 

her, finally got one finger on it, felt it slip nearly away, but at last got it.  Of course, after 

she has made the discovery, it becomes hers.  This is a case in which an actor in a non-

spatial story of thinking is understood by blending it with a spatial action-story of moving 

and manipulating. 

We can blend our notion of thought with small spatial stories of physical 

manipulation that do not involve self-propelled locomotion.  In this blend, the actor only 

manipulates objects as instruments, tools, or aids to fabrication.  When we talk of 

cognitive "instruments" or conceptual "tools" or of "piecing together a proof," we are 

blending the activity of thought with the action of manipulation, specifically 
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manipulation for the purpose of manufacture.  We may "apply" a theorem in the way we 

"apply" a template.  We may "carve" out a new mathematical concept in the way we 

"carve" a statue out of wood or stone. 

Small spatial stories of moving and manipulating go together in our experience.  

We conceive of thought largely by blending our notion of mental activity with small 

spatial stories of actors as movers and manipulators.  

Now let us consider the special case of a quest story.  A quest story can be a story 

of actual spatial movement and manipulation.  A blended quest story is one in which non-

spatial activity is blended with a quest story of spatial movement and manipulation.  For 

example, we can blend our conception of planning, conniving, and reasoning with a small 

spatial quest story to achieve the blend of a mental quest.  If the mental activity is 

mathematical, this produces the special case of a mathematical quest.  And if the 

mathematical mental activity is the action of making our way through a mathematical 

proof, then we have the yet more special case of a proof quest.  In this special case, the 

thinking is mathematical, and the mathematician is a quester. Apostolos Doxiadis, in 

"Euclid’s Poetics: An examination of the similarity between narrative and proof," a 

lecture given at the Mathematics and Culture conference in Venice in April 2001, points 

out, quite correctly, that spatial conceptions of locations, paths, objects, and intentional 

movement and manipulation are at the base of our conception of proving a theorem.  I 

would say, in my terms, that Doxiadis is exploring the mental quest blend, with emphasis 

on the special case of the mathematical mental quest and the yet more special case of the 

proof quest.   

Given human experience, there is no more compelling story than a blended quest 

story.  As Apostolos Doxiadis writes in "The mathematical logic of narrative,"  

 

Some of the basic axioms of this Hollywood cosmology of film are: 

1.  All stories are really quest stories. 
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1.1  If a story does not appear to be a quest story at first glance, delve 

deeper into it and unearth the quest story within it. 

1.2  If you fail in 1.1 drop the story, it ain't worth it. 

2. All quest stories are about a sympathetic hero searching for, and 

finding, a treasure. 

2.1 The treasure may be material (money, object, secret weapon, world 

cup) or immaterial (love, salvation, knowledge, etc.) 

3. The interest of the story is determined by certain factors, among 

them: a) how important the treasure is, b) how badly the hero or heroine 

wants it, c) how difficult the quest is.  The more difficult, the more tickets 

at the box office. 

4. The difficulty of the journey is incarnate in a person, called the 

Antagonist. 

And so on. 

In a spatial story of a quest, the intentional actor is literally moving from spatial 

location to spatial location, aided or impeded by geography, elements, or other actors.  

When we blend this story with the mathematical activity of proving a theorem, the 

completion of the proof is, in the blend, the object of the quest; the mathematician is the 

quester; the object-theorem is a blended location; the quester moves/proceeds step-by-

step; whatever step he has reached in the proof is his current location; he continues to 

seek paths and avenues to the next step; sometimes he must abandon a path and return to 

a previous one; he can become stuck.  There are somewhat different varieties of this 

blend.  In a spatial quest story, the goal can be to obtain a particular object, or to arrive at 

a particular place, or to complete the entire journey, or indeed all of these—completing a 

journey to arrive at a place and so acquire the object in that place. Accordingly, in the 

proof quest, the goal can be to complete the entire proof, or to arrive at its final 

conclusion, or to possess, mentally, the truth of that final conclusion, or all of these things 
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together.  The reductio ad absurdum blended quest is treated in Cognitive Dimensions of 

Social Science (Turner 2001). 

There are of course other blends based on small spatial stories that help us 

conceive of mathematical proof, namely, manipulation stories.  The proof can be an 

object to be manufactured; the mathematician can try to piece it together from parts; he 

can try to connect one part to the other but be unable to tie it together. 

 

Geometric Constructions 

 

The human activity of proving a theorem is one thing, but what about the 

mathematical objects themselves, as opposed to the thought of the mathematician and the 

proofs that this thought generates?  The hallmark of Greek geometry, for example, is 

stasis rather than dynamics.  What could be the role of small spatial stories in a world 

with no movement, no change? 

Parmenides described a world without small spatial stories in The Way of Truth. 

But as Parmenides indicates in The Way of Seeming, we do not think that way.  For us, 

there are objects, events, causes, effects, change. 

The conceptual roots of Greek geometry lie in small stories of manipulation, 

namely, of physical construction using a compass, or a compass and a straightedge.  

Geometric objects were defined by construction.  The three great problems of classical 

antiquity were defined as such because they were objects without a story to produce 

them: squaring the circle, duplicating the cube, and trisecting the angle.  Even simple 

algebraic operations were understood through construction: addition, subtraction, 

multiplying a number by a rational number, and so on.  It is remarkable that mathematics 

would have placed such a responsibility for mathematical truth upon the existence of a 

small spatial story for producing the object. 
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Human Scale 

 

There are many realms of mathematics for which it is obvious that the conceptual 

roots are in small spatial stories. 

• Functions can be thought of as "carrying" one value into another, or as 

"taking" one or more values and "transforming" them into another value.  

In these conceptions, functions are movers and manipulators in small 

spatial stories.   

• Numbers are conceived of through small spatial stories.  One number is 

the "successor" of another in set theory.  Numbers are defined through 

concepts such as "cuts," or "limits" that are "approached."   

• Analysis is defined through small spatial stories.  It is the study of "rates 

of change" of quantities.   

• A derivative, in analysis, is defined in terms of coordinated changes, 

thought of as movements.  It is perhaps most natural for human beings to 

think of a derivative as the rate of change of the value of a function over 

the value of time, the study of what Newton called "fluxions." But the 

parameter need not be time.  The derivative is thought of intuitively as the 

rate of the change of the function with respect to the change of the value 

of the parameter. 

• An integral, in analysis, can be thought of as a static area, but even that 

area is the result of an operation: we "integrate" over the values of a 

function as its parameter varies, to achieve the definite integral.  

As long as such mathematical conceptions are based in small spatial stories at 

human scale, that is, fitting the kinds of scenes for which human cognition is evolved, 

mathematics can seem straightforward, even natural.  The same is true of physics.  If 

mathematics and physics stayed within these familiar story worlds, they might as 
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disciplines have the cultural status of something like carpentry: very complicated and 

clever, and useful, too, but fitting human understanding.   

The problem comes when mathematical work runs up against structures that do 

not fit our basic stories.  In that case, the way we think begins to fail to grasp the 

mathematical structures.  The mathematician is someone who is trained to use conceptual 

blending to achieve new blends that bring what is not at human scale, not natural for 

human stories, back into human scale, so it can be grasped.  Let us look at a few different 

spots. 

• Incommensurability.  In the normal human scene, 1 is a cognitive 

reference point, and if we take any length as a unit, and make a cut, it 

seems to break into two parts, commensurate with the unit, that sum to 

make the unit, such as one-half and one-half.  So what do you do when 

someone finds a number that is not commensurate with unity, like the 

square root of two?  Well, according to legend, you throw him overboard 

and thereafter revert to the normal human scene of construction.  Then you 

are safe: you can actually construct a hypotenuse of an isosceles right 

triangle with legs equal to unity, so relax; don't pursue unnatural 

directions.  Mathematicians have worked around the difficulty by 

reforming the concept of number, as Fauconnier and I discuss in The Way 

We Think, to give a new human-scale blend that is not available to most 

people. 

• Rates of change and limits.  Plenty of people can understand the idea of a 

rate of change.  It fits our world of human-scale small spatial stories.  But 

asking them to think of limits that are approached but not reached does not 

fit our stories so well.  We never approach something and keep moving 

without reaching it.  We have all seen scores of bright freshmen fail to 

understand the simple definition of a derivative of a function as the limit 
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as h approaches zero of a quotient, where the divisor of the quotient is h 

and the numerator is the difference between the function of the quantity x 

+ h and the function of x: 

 

There is additional difficulty when someone tries to understand that the 

derivative might not exist.  How can there be no rate of change?  For the 

derivative to exist, the limit must exist as it is approached from both 

"directions."  How can something approach a limit from one direction but 

not from another?   The existence of functions without derivatives has 

disturbed even superb mathematicians. 

One of my favorite things to study when I was at Berkeley was counterexamples in 

mathematics.  Many counterexamples are cases where a small spatial story provides a 

fine conceptual understanding for a mathematical system but leads to intuitions that are 

not sustained technically.   So counterexamples are often surprising. 

It is a great virtue of conceptual integration that we can create new blends at 

human scale, by using something that is already at human scale as one input to the blend 

and by performing various kinds of conceptual compression on structure within inputs 

and on relations between inputs.   

Let me give an introduction to conceptual compression to human scale from the 

domain of language.  

One of our most basic small spatial stories is Caused Motion: an agent performs 

an action that causes an object to move in a direction, as in "He threw the ball over the 

fence" (Goldberg 1995).  This is associated in English with the Caused-Motion 

construction, whose basic form is NounPhrase-VerbPhrase-NounPhrase-

PrepositionalPhrase.  But we can make sense of many things that are not caused motion 



14 9/4/05 

 

by blending them with the Caused Motion small spatial story, and even prompting for 

their understanding in the same clausal form: 

o I walked him into the room. 

o He sneezed the napkin off the table. 

o I pointed him toward the door. 

o They teased him out of his senses. 

o I will talk you through the procedure.  

o I read him to sleep.   

o They prayed the two boys home.   

o I muscled the box into place.   

o Hunk choked the life out of him.   

o He floated the boat to me.  

And this kind of compression to human scale can be used for conceptual arrays that are 

not at human scale, so 

o The Upper Paleolithic brought new opportunities to humankind. 

Similarly, consider the Resultative construction in English, which has the form 

NounPhrase-Verb-NounPhrase-Adjective, where the Adjective denotes a property C 

(Goldberg 1995).  This clausal form carries a small story: A does something to B with the 

result that B has property C, as in "Kathy painted the wall white."  We can make blends 

that are organized by the Resultative story, and this gives human narrative scale to many 

things: 

o Last night's meal made me sick. 

o I boiled the pan dry. 

o The earthquake shook the building apart. 

o Roman imperialism made Latin universal. 

Each of these scenes has complicated structure, but all can be understood through 

the resultative story.  The simple resultative story is at human scale and we can render 
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complexities immediately graspable by blending them with the resultative story.  The 

resultative story allows us to compress over Identity (e.g. Roman imperialism), Time, 

Space, Change, Cause-Effect, and Intentionality.  

 

Complex Numbers 

 

The same sort of compression to human scale through small spatial stories plays a 

role in mathematics.  First, a brief history of how numbers arise through blending, 

following The Way We Think: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

points 
on 
line 

containers numbers 

real 
numbers 

line in space 
with rotation 

numbers 
with 
transcendentals 

rational + 
irrational 
numbers 

arcs 

rational 
numbers segments 

number 
line with 
zero 

proportions 

complex 
numbers 

2D space 



16 9/4/05 

 

We start with three input mental spaces:  whole numbers, discrete points on a line 

(such as first step, second step, third step in walking); and containers of objects.  There is 

a counterpart mapping across these spaces connecting the steps, the whole numbers, and 

the containers.  Additionally, the starting point on the path is mapped to the empty 

container.  However, the empty container and the starting point on the path have no 

counterpart in the mental space with whole numbers.  Blending these three inputs 

produces the number/line blend, with projection of the starting point and empty container 

to the blend, yielding there the emergent number zero.  The operation of addition in the 

blend comes from the input with containers.  In the blend, we have as emergent structure 

the addition of segments (with lengths 1, 2, 3, etc) by juxtaposition.  We also have the 

emergent notion of a segment of zero length, which fits into the addition scheme.  The 

idea of a segment of zero length is counterintuitive at first but acquires human scale in the 

blend, where it is just another segment.  In the blend, the number line has numbers on 

only points 0, 1, 2, . . .  

The next blend has as inputs the number line with zero and our concept of 

proportions to achieve rational numbers.  This mental blend is altogether more 

complicated than one might at first imagine.  Fauconnier and I analyze it at length in The 

Way We Think.   

The next mental blend is commonly associated with Pythagoras.  It blends 

together rational numbers and line segments.  There is a simple cross-space mapping 

from segments to rational numbers since rational numbers are already on a line in virtue 

of previous blends.  It turns out that some segments, such as the hypotenuses of some 

right triangles, have no counterpart in the number input.  But in the blended space, those 

segments with one extremity at zero are already projected.  In the blend, the other 

extremity is a number/ point.  This gives the emergent notion in the blend of an irrational 

number.  It follows that segments can have irrational length.  Operations of polynomial 
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roots, e.g. square roots, emerge as general operations in the blended space.  In this 

blended space, every number now has an nth root. 

Geometric blends allow one to view arc lengths as limits of added segment 

lengths.  The history and mathematical details are complicated, but in principle this 

works like the previous blend: arcs are projected to arc length/numbers in the blended 

space yielding emergent numbers like π.   

In the next step, there is a number input, which has a half-line, a ray.  But the 

geometric input has a full line in 2D space.  Mirror image points can be obtained by 

rotation by 180 degrees.   So in the blended space, we have negative numbers on the line 

through 180-degree rotation from positive numbers.  Addition is emergent as a geometric 

operation on segments: rotate from the extremity of segment 1 around the origin of 

segment 2 (by either 0 degrees or 180 degrees).  Only the line is projected from the 2D 

space input. 

Through successive operations of blending, the original concept of number as 

whole number, which is already very much at human scale, has been extended to produce 

blended concepts that are at human scale only because of the blending.  The original 

system of whole numbers was extended to include zero and fractions.  Some of this 

blending is very complicated, but once it works, after the fact, it looks as if new elements 

have been simply added to old ones, because we still use the same words for them.  In 

fact, in the metamorphosis of the category number, the entire structure and organizing 

principles have been dramatically altered.  It is an illusion that the old input is simply 

transferred wholesale as a subset of the new category.   

 

The blending step I want to concentrate on is the one that produces complex 

numbers.  Fauconnier and I review the history of this conceptual development, which was 

slow and fraught with difficulty.  Square roots of negative numbers had shown up in 

formulas of sixteenth-century mathematicians and they had correctly formulated 
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operations on these numbers. The square roots of negative numbers lent themselves to 

formal manipulations without fitting into a mathematical conceptual system.  A genuine 

concept of complex number took time to develop.  

This development begins from the number line blend.  It was extended by 

Descartes to create the coordinate plane.  The seventeenth-century mathematician John 

Wallis then observed in his 1685 book Algebra  that if negative numbers could be 

mapped onto a directed line, complex numbers could be mapped onto points in a two-

dimensional plane.  He provided geometric constructions for the counterparts of the real 

or complex roots of ax2 + bx + c = 0 (Kline 1980, page 272).   In effect, Wallis provided 

a consistent model for the mysterious numbers, giving some substance to their formal 

manipulation.  Although Wallis's mapping showed the formal consistency of a system 

including complex numbers, this was not enough to extend the concept of number.  As 

Morris Klinereports, Wallis's work was ignored: it did not make mathematicians 

receptive to the use of such numbers. This is an interesting point in itself. Mapping a 

coherent space onto a conceptually incoherent one is not enough to give the incoherent 

space new conceptual structure.  It also follows that coherent abstract structure is not 

enough, even in mathematics, to produce satisfactory conceptual structure: In Wallis's 

representation, the metric geometry provided abstract schemas for a unified interpretation 

of real and imaginary numbers, but this failed to persuade mathematicians to revise their 

domain of numbers accordingly.  Only after the new conceptual structure of complex 

number develops in the blended space is the domain of numbers actually extended.   

In this blend, but not in the original inputs, it is possible for an element to be 

simultaneously a number and a geometric point, with Cartesian coordinates (a, b) and 

polar coordinates (ρ, θ).  In the blend, numbers have interesting general formal 

properties, such as  

(a, b) + (a', b') = (a+a', b+b') 

(ρ, θ) x (ρ ', θ') = (ρρ ', θ + θ') 
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Every number in this extended sense has a real part, an imaginary one, an angle, 

and a magnitude.  By virtue of the link of the blend to the geometric input space, the 

numbers can be manipulated geometrically; by virtue of the link of the blend to the input 

space of real numbers, the new numbers in the blend are immediately conceptualized as 

an extension of the old numbers.  

The entire conceptual integration network has two inputs, two-dimensional 

geometric space and real numbers.  Complex numbers and their properties emerge in the 

blended space.  As in Wallis's scheme, the mapping from points on a line to numbers has 

been extended to a mapping from points in a plane to numbers.  This mapping is partial 

from one input to the other—only one line of the plane is mapped onto the real numbers 

in the other input—but it is total from the geometric input to blend: all the points of the 

plane have counterpart complex numbers.  And this in turn allows the blend to 

incorporate the full geometric structure of the geometric input space. 
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Input  I Input  I 1 2

Blend

Generic Space
[Commutative ring operations on pairs of elements]

[positive and negative numbers, 
addition, multiplication]

[points in oriented plane; 
vector transformations]

[complex numbers; real, imaginary 
parts, argument, magnitude, addition 
and multiplication of complex numbers]  

 

When a rich blended space of this sort is built, an abstract generic space comes 

along with it.  Having the three spaces containing respectively points (input 1), numbers 

(input 2), complex point/numbers (blend) entails a fourth space with abstract elements 

having the properties "common" to points and numbers.  The abstract notions in this case 

are "operations" on elements.  For numbers, the operations are addition and 

multiplication.  For points in the plane, the operations can be viewed as geometric 

transformations, like rotation and stretching.  In the blended space of complex numbers, 
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numbers and vectors are the same thing, and so addition of numbers just is vector 

addition and multiplication of numbers is rotation and stretching of vectors.  

In the generic space of the fully completed integration network, specific 

geometric or number properties are absent.  All that is left is the more abstract notion of 

two operations on pairs of elements, such that each operation is associative, commutative, 

and has an identity element; each element has under each operation an inverse element; 

and one of the two operations is distributive with respect to the other.  Something with 

this structure is called by mathematicians a "commutative ring."  It is typically 

manipulated unconsciously by mathematicians who study geometry, arithmetic, or 

trigonometry until it becomes itself an object of conscious study in mathematics.  In the 

development of complex numbers, it took roughly three centuries for mathematicians to 

reach that point. 

The emergence of the concept of complex numbers with arguments and 

magnitudes displays all the properties of blending.  There is an initial cross-space 

mapping of numbers to points in planar geometric space, a generic space, a projection of 

both inputs to the blend, with numbers fused with geometric points, emergent structure 

by completion (arguments and magnitudes), and by elaboration (multiplication and 

addition reconstrued as operations on vectors).   

The blend takes on a realist interpretation within mathematics.  It constitutes a 

new and richer way to understand numbers and space.  Yet it also retains its connections 

to the earlier conceptions provided by the input spaces.  Conceptual change of this sort is 

not just replacement.  It is the creation of more elaborate and richly connected networks 

of spaces.  

The evolution of the concept of complex numbers highlights the deep difference 

between naming and conceptualizing; adding expressions like √-1 to the domain of 

numbers, and calling them numbers, is not enough to make them numbers conceptually, 

even when they fit a consistent model.  This is true of category extension in general.   
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Complex numbers are exotic in the history of human conception.  They show up 

only yesterday, relative to the fifty-thousand year history since the Upper Paleolithic.  

They are even very recent relative to the invention of writing perhaps eight thousand 

years ago.  How is something like this invented, and how can it stick?  The answer here is 

that we have now achieved a blend in which the structure is made congenial by small 

spatial stories.  Complex numbers are just vectors in two-dimensional space.  To 

"perform operations" on them is just to manipulate objects.  Adding two of them is just 

laying the origin of one vector down on the endpoint of the other to "reach" a new point, 

which is the sum of the two numbers.  Multiplying them is just stretching and rotating.  

This is a lovely little spatial story, at human-scale.  The result is a coherent conceptual 

packet, at human scale, involving actors as movers and manipulators of objects.   

I do not mean to suggest that mathematical thinking is simple, or that the 

accomplished mathematician cannot achieve conceptions that go beyond simple spatial 

stories.  But the history of mathematics and the cognitive science of mathematics suggest 

that even the most sophisticated and recent mathematics is indebted for its existence to 

our ability to blend strange mental arrays with simple spatial stories to produce human-

scale little narratives that ground our thinking.  In many cases, these cognitively 

congenial, story-based conceptions count as the accurate versions grasped and deployed 

by experts.  In other cases, they serve as the memorable root, a kind of cognitive gnomon 

that serves very well, but which the experts know how to correct in those cases where 

they start to fail.  This is the case, cognitively, in every domain, from finance to 

astronomy.  We use Newtonian theoretical physics all the time, until we get into the 

ranges where we need to correct ourselves from being misguided.  In mathematics, we 

can use the prior blends of the real number line, for example, just fine, without dealing 

with roots of negative numbers, but we know how to adjust once we get into that area, 

and activate the more sophisticated blend.  We see this in pedagogy at every stage.  My 

two older children, for example, have completed third grade in the United States and so 



23 9/4/05 

 

have had pounded into their head over the course of a year the rational number blend.  By 

now, the decimal expansion of a fraction seems perfectly natural to them  But here is an 

interesting bit: when they learn that the decimal expansion of a number can go on 

indefinitely, they think about it.  They understand that with each additional decimal place, 

the magnitude of the decimal expansion gets a little bigger.  At first, they focused on this 

only for irrational numbers, until they realized that it's just the same for a rational number 

like one-third.  How can it be, they ask, that the decimal expansion keeps getting bigger 

but the number is finite?  Why does it not keep getting bigger?  They wrestle with this 

and are on the verge of grasping it.  But at the moment, they are in the blend of a small 

spatial story at human scale, where if you keep on going, and you go farther with every 

step, then the distance you travel is unbounded.   

We can forgive them, partly because we remember that Zeno stumped even the 

brilliant ancient Presocratic philosophers with a similar situation that seemed so contrary 

to human conception as to count as a paradox, but also because at each stage in the 

history of mathematics, we see that even elite mathematicians get confounded 

conceptually.  The greatest mathematicians of their ages wrestled with the concept of 

complex numbers and often failed, in whole or part, while the merest amateur now can 

perform operations with complex numbers that would have amazed Wallis.  The 

difference is that we have now achieved a cognitive compression that is congenial to 

human understanding because it is based in small spatial stories.  The future of 

mathematics is the achievement of ever further such blends of mathematical structures 

with patterns that the human mind can grasp and manipulate. 
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