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APPENDIX

On the Number of Primes Less Than a Given Magnitude

by BERNHARD RIEMANNT

I believe I can best express my gratitude for the honor which the Academy
has bestowed on me in naming me as one of its correspondents by immedi-
ately availing myself of the privilege this entails to communicate an investiga-
tion of the frequency of prime numbers, a subject which because of the
interest shown in it by Gauss and Dirichlet over many years seems not wholly
unworthy of such a communication.

In this investigation I take as my starting point the observation of Euler
that the product

1 I
P-f

where p ranges over all prime numbers and n over all whole numbers. The

function of a complex variable s which these two expressions define when

they converge I denote by {(s). They converge only when the real part of s is

greater than 1; however, it is easy to find an expression of the function which

always is valid. By applying the ‘equation

[7 et gy — M — 1),
0 n
one finds first

(s — 1) = [ 5%

o e — 1

If one considers the integral
(—x)'dx
e* — 1

tTranslated from Ueber die Anzahl der Primzahlen unter einer gegebenen Grisse [R1,
p. 145] by H. M. Edwards.
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from --co to -} oo in the positive sense around the boundary of a domain
which contains the value 0 but no other singularity of the integrand in its
interior, then it is easily seen to be equal to

(e-n.ﬂ' - eu:i) J‘m xSW1 dx,
1]

e* — 1
provided that in the many-valued function (—x)*"' = eti1loel=x) the Joga-
rithm of —x is determined in such a way that it is real for negative values of x.
Thus

2sin s Th(s — 1) () = i [ (D
when the integral is defined as above.

This equation gives the value of the function {(s) for all complex s and
shows that it is single-valued and finite for all values of s other than 1, and
also that it vanishes when s is a negative even integer.

When the real part of s is negative, the integral can be taken, instead of in
the positive sense around the boundary of the given domain, in the negative
sense around the complement of this domain because in that case (when
Re s < 0) the integral over values with infinitely large modulus is infinitely
small. But inside this complementary domain the only singularities of the
integrand are at the integer multiples of 2zi, and the integral is therefore equal
to the sum of the integrals taken around these singularities in the negative
sense. Since the integral around the value n2zi is (—n2ni)*~'(—2ni), this gives

2sin s (s — 1) {(s) = @r)* X n* ' [(—i)y ! + 71,

and therefore a relation between {(s) and (1 — s) which, by making use of
known properties of the function IT, can also be formulated as the statement
that

r[(% - 1)7:"”{(5)

remains unchanged when s is replaced by 1 — s.

This property of the function motivated me to consider the integral
IT1((s/2) — 1) instead of the integral II(s — 1) in the general term of 3 n*,
which leads to a very convenient expression of the function {(s). In fact

_!_ 5 -5/2 RPN = .
n’H(Z 1)7: = J e X dx;

0

so when one sets
3 e = (),
it follows that
(5 — 1)) = [ wloxr " dx
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or, because
p(x) + 1 = x“”]:2;y( ) 4 l] (Jacobi, Fund., p. 184),
that
n(% - l)n"”ﬁ’(s) = [ woxermrdx +j ( )x“ /2 iy

_|_ _2_ J. (x(:—amfz = x(x.-”l)—!) dx
a

= I - (5/2)-1 | -(1+38)/2
=7+ Jl w(x)(x + x ) dx.

I nowsets =4+ i and

I (5)(s — D2(s) = &)
so that
& =4—@+P IT w(x)x3/4 cos(}t log x) dx

or also

() =4 jl M%:'(_x)l el cos(%t log x) dx.

This function is finite for all finite values of 7 and can be developed as a
power series in #t which converges very rapidly. Now since for values of s
with real part greater than 1, log {(s) = — Y, log (1 — p~*) is finite and since
the same is true of the other factors of &(z), the function &(¢) can vanish only
when the imaginary part of 7 lies between 4/ and —}i. The number of roots of
&(r) = 0 whose real parts lie between 0 and T is about

T Iog .
2n 2=n
because the integral [ d log &(¢) taken in the positive sense around the domain
consisting of all values whose imaginary parts lie between }i and —4i and
whose real parts lie between 0 and T'is (up to a fraction of the order of magni-
tude of 1/T) equal to [T log (7/2r) — TJi and is, on the other hand, equal to
the number of roots of £(¢) = 0 in the domain multiplied by 2zi. One finds in
fact about this many real roots within these bounds and it is very likely that
all of the roots are real. One would of course like to have a rigorous proof of
this, but I have put aside the search for such a proof after some fleeting vain
attempts because it is not necessary for the immediate objective of my in-
vestigation.
If one denotes by a the roots of the equation £(«) = 0, then one can ex-
press log &(1) as

5 log(1 — 15) + log ¢(0)
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because, since the density of roots of size ¢ grows only like log (#/2x) as t
grows, this expression converges and for infinite ¢ is only infinite like 7 log 7;
thus it differs from log &(¢) by a function of 7 which is continuous and finite
for finite ¢ and which, when divided by ¢/, is infinitely small for infinite #. This
difference is therefore a constant, the value of which can be determined by
setting 1 = 0.

With these preparatory facts, the number of primes less than x can now be
determined.

Let F(x), when x is not exactly equal to a prime, be equal to this number,
but when x is a prime let it be greater by 4 so that for an x where F(x) jumps

F(x+0)+ F(x —0)
2

F(x) =

If one sets

oo

R o —i=1 ~28 — -s=1 :
preafJrian e[t
in the formula
log {(5) = —Xlog(l —p)=Xp*+3Xp>+IXp>+ -

one finds

logl(s) (7 oy

T = _[lf(x)x Udx
when one denotes

F(x) + +F(x'2) + {F(x/3) + - - -

by f(x).

This equation is valid for every complex value @ + bi of s provided a > 1.
But when in such circumstances

g(s) = J:D h(x)x *dlog x

is valid, the function /4 can be expressed in terms of g by means of Fourier’s
theorem. The equation splits when 4 is real and when g(a + bi) = g,(b)
-+ ig,(b) into the two equations

g.(b) = J‘: h(x)x~* cos(b log x) d log x,

ig,(b) = —i j :’ h(x)x~* sin(b log x) d log x.

When both equations are multiplied by [cos(b log ¥) -+ i sin(b log y)] db
and integrated from —oco to -0, one finds in both cases that the right side is
nh(y)y~* so that when they are added and multiplied by iy*

2nih(y) = | : g(s)y* ds,
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where the integration is to be carried out in such a way that the real part of s
remains constant.t

The integral represents, for a value of y where the function h(y) has a
jump, the middle value between the two values of h on either side of the jump.
The function f was defined in such a way that it too has this property, so one
has in full generality

1 atel | s) .,
FO) = o [ 10RES) e g,

a—oi s

For log { one can now substitute the expression

s s
5 logm — log(s — 1) — logI'I(T)

4 2 log[l 4 (i;a—%)z] + log &(0)

found above; the integrals of the individual terms of this expression will not
converge, however, when they are taken to infinity, so it is advisable to refor-
mulate the equation as

4102 {(5)
1 I a+oof s i d
Sx) = _Eilonga_mr s~ @

by integration by parts.

Since
—logl'I(-—;—) - Iim[é log(l & %) — 5 log m]

for m = oo and therefore,

ﬁd% logﬂ(%) . d-‘l— log(l + %3)’

ds - 2 ds
all of the terms in the expression for f(x) except for the term
1 l a+eai l " -
ST j " - log ¢(0)x" ds = log §(0)
take the form
I s
dl —logll — —
[ ¥ == [s ( ﬁ)] s
27i log x L-m ds 3 ds.
But
1 s
d[-s— log (1 — 73-)] O
dap (B—s5)B

{This argument is not quite correct. See the relevant note in Riemann’s collected works
[R1] (translator’s note).
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and, when the real part of s is greater than lhe real part of g,

~mml g = =l

or
= .[ xP 1 dx
0

depending on whethert the real part of f§ is negative or positive. Thus

Lo i),

2ni log x ds ¥
] a+oof l .
= —om ], .5 le(1 - F)" ds
x x;? 1
} log_x dx -+ const

in the first case and

xﬂ”"l
j dx -} const
o log x

in the second case.

In the first case the constant of integration can be determined by taking
p to be negative and infinite. In the second case the integral from 0 to x takes
on two values which differ by 2zi depending on whether the path of integra-
tion is in the upper halfplane or in the lower halfplane; if the path of integra-
tion is in the upper halfplane, the integral will be infinitely small when the
coefficient of i in f is infinite and positive, and if the path is in the lower
halfplane, the integral will be infinitely small when the coefficient of i in
p is infinite and negative. This shows how to determine the values of
log[l — (s/f)] on the left side in such a way that the constants of integration
drop out.

By setting these values in the expression for f(x) one finds

J(x) = Li(x) — Z‘: [Li(x(1/2*+at) 4 Li(x"1/2 -]

] T logx T 10840,
wheret the sum ., is over all positive roots (or all roots with positive real
parts) of the equation &(a) = 0, ordered according to their size. It is possible,
by means of a more exact discussion of the function &, easily to show that
with this ordering of the roots the sum of the series

E [Li(x”/z’”") = Li(xn,-"zi—ai)] log X

TNote that this excludes the possibility Re f = 0 and therefore does not apply to roots,
if any, on the imaginary axis (translator’s note).

fConcerning the erroncous value of log £(0) in this formula, see Chapter 1 (translator’s
note).
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is the same as the limiting value of

2
1 a+bi d E log[l —2)] .
27i .[ o ds G

as b grows without bound; by a different ordering, however, it can approach
any arbitrary real value.
From f(x) one can find F(x) by inverting

o) =X— LF(xi/m)

to find
F(x) = X (=1 £ xtim),

where m ranges over all positive integers which are not divisible by any square
other than 1 and where gz denotes the number of prime factors of m.

If 3, is restricted to a finite number of terms, then the derivative of the
expression for f(x) or, except for a part which decreases very rapidly as x
increases,

log x = log x

1 '3 cos(e log x)x~1/2

gives an approximate expression for the density of primes +- half the density
of prime squares -+ the density of prime cubes, etc., of magnitude x.

Thus the known approximation F(x) = Li(x) is correct only to an order
of magnitude of x'/2 and gives a value which is somewhat too large, because
the nonperiodict terms in the expression of F(x) are, except for quantities
which remain bounded as x increases,

Li(x) — 4 Li(x/2) — 4 Li(x'?) — 4 Li(x'*)
_|_ ?I; Li(xl/ﬁ) e %r Li(xlf'?) + .

In fact the comparison of Li(x) with the number of primes less than x
which was undertaken by Gauss and Goldschmidt and which was pursued
up to x = three million shows that the number of primes is already less than
Li(x) in the first hundred thousand and that the difference, with minor fluc-
tuations, increases gradually as x increases. The thickening and thinning of
primes which is represented by the periodic terms in the formula has also been
observed in the counts of primes, without, however, any possibility of estab-
lishing a law for it having been noticed. It would be interesting in a future
count to examine the influence of individual periodic terms in the formula for
the density of primes. More regular than the behavior of F(x) is the behavior
of f(x) which already in the first hundred is on average very nearly equal to

Li(x) -+ log £(0).

tStrictly speaking, the terms Li(x(1/2)+=i) are not periodic but merely oscillatory
(translator’s note).



